FAST ACCESS COMMUNICATION

Installation Manual Ring-Master System CB901

Ring-Master Communication \&
Security Systems

No text on this page

CHAPTER

Paragraph 1.	Introduction 1.1. General System Description 1.2. Central layout	Page 5 Page 5 Page 9
Paragraph 2.	Stations	Page 11
Paragraph 3.	Installation	Page 13
	3.1. Installation planning	Page 13
	3.2 Central location	Page 13
	3.3. Cabling requirements	Page 14
	3.4. Installation of central exchange	Page 15
	3.5. Mounting the cardrack backplate	Page 15
	3.6. Cable termination in station sockets	Page 16
	3.7. Cable termination in central cardrack	Page 16
	3.8. Installation of the cardrack	Page 17
	3.9. Power unit specs., central and station power needs, and connection of power units	Page 17
	3.10 Plugging in printed circuit boards	Page 19
	3.11 Installation of Programme Distribution card DP977	Page 19
	3.12 Power on and system check	Page 21
	3.13 Adjustments Page	72
	3.14 Installing EMC approved cardracks DP991 and DP992	Page 23
	3.15. Display Master Station AA960, connection of external functions	Page 30
Paragraph 4.	Programming	Page 31
Paragraph 5	Final Checkout and Commissioning	Page 33
Paragraph 6.	Technical Specifications	Page 43

[^0]No text on this page

1. INTRODUCTION

1.1. GENERAL SYSTEM DESCRIPTION

Ring-Master system CB 901 is an all-to-all direct speech system, controlled by a fully electronic central exchange. Similar to a mini-computer, all its functions are microprocessor controlled. This enables the customer to select from a wide range of programmable features designed to achieve flexibility and optimal efficiency in internal communication.

A built-in Lithium battery will secure all programmed information up to 10 years
FAIL-SAFE POWER SUPPLY

STATION CAPACITY 2-2.170

SIMPLIFIED CABLING
The unique cabling concept provides the advantages of both centralized and decentralized cabling arrangements. Each station requires one single pair for dialling and conversation. Power can either be individual to each station or, using a single reference pair, remote groups of stations can be supplied from local mains power units. The cabling between master unit and each slave is ordinary telephone wires or optical fibre.

Fig. 1.1. System CB901, Layout.

SINGLE-STAGE SYSTEM CB 901-1

DOUBLE-STAGE SYSTEM CB 901-2
ANALOGUE TRANSMISSION:18 PAIR INSTALLATION CABLE - MAX 1.5 KM
DIGITAL TRANSMISSION; 2 PAIR FIBRE OPTICAL CABLE - MAX 7.2 KM
DIGITAL TRANSMISSIIN; 2 PAIR TWISTED CABLE - MAX 1.5 KM

POWER

TRIPLE-STAGE SYSTEM CB 901-3
ANALOGUE TRANSMISSION:18 PAIR INSTALLATION CABLE - MAX 1.5 KM BETWEEN EACH STAGE DIGITAL TRANSMISSION; 2 PAIR FIBRE OPTICAL CABLE - MAX 7.2 KMBETWEEN EACH STAGE DIGITAL TRANSMISSIIN; 2 PAIR TWISTED CABLE - MAX 1.5 KM BETWEEN EACH STAGE

MULTI-STAGE SYSTEM CB 901-M (UP TO 30)
DIGITAL TRANSMISSION; 2 PAIR FIIRRE OPTICAL CABLE - MAX 7.2 KMBETWEEN DNC AND EACH STAGE DIGITAL TRANSMISSIIN; 2 PAIR TWISTED CABLE - MAX 1.5 KM BETWEEN DNC AND EACH STAGE

Fig. 1.2. CB901, System Configuration

COMPACT SIZE

SYSTEM CONFIGURATIONS

The central unit is compact. A standard basic cardrack equipped for 96 subscribers measures only $256 \mathrm{~mm} \times 570 \mathrm{~mm} \times 271 \mathrm{~mm}$ (10.1" x 22.4 " $\times 10.9$ "). Silent in operation, once fitted with its cover, the central can operate inconspicuously in almost any location.

The Ring-Master CB 901 system is divided into four categories based on the number capacity:

Single-Stage System CB 901-1 - up to maximum 240 subscribers
Double-Stage System CB 901-2 - above 240 and up to 480 subscribers
Triple-Stage System CB 901-3 - above 480 and up to 717 subscribers
Multi- Stage System CB 901-M - above 717 up to maximum 7.170 subscribers
In a single-Stage system, the central unit consists of a Basic Cardrack DP 979 containing the Basic Cardset and Subscriber Cards, totalling 96 subscribers. If the number requirements exceed this, an additional Subscriber Cardrack DP 980 is necessary, giving a maximum capacity of 240 subscribers in a single-stage system.

In a Double-Stage system CB 901-2, two Single Stage systems CB 901-1 are interconnected by:
A. Analog Transmission on Multi-pair cable; a 18-pair installation cable. The system is equipped for 8 interlinks between the stages. Maximum distance between the stages is 1.5 KM . Each stage can have 240 subscribers, giving a maximum capacity of 480 in a DoubleStage system.
B. Digital Transmission on one pair fibre optical cable or two pair twisted data cable.
The system is equipped for 8 interlinks between the stages. Maximum distance between the stages is 7.2 KM . Each stage can have 240 subscribers, giving a maximum capacity of 480 in a Double-Stage system.

The Triple-Stage system CB 901-3 configuration consists of three Single Stage systems CB 901-1 interconnected by:
A. Analog Transmission on Multi-pair cable:
a 18-pair installation cable in a triangle configuration. The system is equipped for 8 interlinks between each stage. Maximum distance between the stages is 1.5 KM . Each stage can have 239 subscribers, giving a maximum capacity of 717 in a Triple-Stage system.
B. Digital Transmission on one pair fibre optical cable or two pair twisted data cable in a triangle configuration. The system is equipped for 8 interlinks between each stage. Maximum distance between the stages is 7.2 KM . Each stage can have 239 subscribers, giving a maximum capacity of 717 in a Triple-Stage system.

The Multi-Stage system CB 901-M configuration consists of one control unit called DNC (Digital Network Controller) and up to 30 slave stages. The DNC unit has no subscriber connection itself, all slave stages are wired to this unit and it handles all traffic between them. For interconnection, fibre optic or standard telephone cable (2 pair) can be used. Each slave stage contains maximum 239 call numbers - which gives a total capacity of 7.170 subscribers in a system. A Multi-Stage system CB 901-M system gives 8 interlinks (audio channels) between the DNC unit and each node slave stage.

LINK CAPACITY
Each slave-stage of 240 numbers is equipped with 15 internal links. Each Digital Network Controller (DNC) is equipped with 1024 internal links. Between each slave stage and the DNC unit 8 interlinks are available.

Fig. 1.3. Link Capacity

1.2. CENTRAL LAYOUT.

Fig. 1.4. CB901-1, PCB Layout
THE CB 901-1 SYSTEM CONTAINS THE FOLLOWING PRINTED CIRCUIT CARDS:
19 Processor Card NFE 1683
18 Timing Control Card NFE 1606
17 Switch Control Card NFE 1519
16 Audio Control Card NFE 1607
15-14 Link Control Cards - 2 pcs. - 15 links NFE 1521
1 Power card NFE 1528
2-13 Subscriber Cards (8 subscribers per card) NFE 1625
21-40 Subscriber Cards (8 subscribers per card) NFE 1625
(10) Programme Distribution Card NFE 1626, if required).

The number of subscribers in a CB 901-1 system may be expanded in steps of 8, plugging in subscriber cards.

The basic cardrack 10 subscriber cards $=80$ subscribers
The subscriber cardrack 20 subscriber cards $=160$ subscribers
Giving a maximum capacity of 239 subscribers, each with access to the 15 links.

Each stage in the central unit consists of a basic cardrack for the common basic cardset, and according to the number capacity, an additional subscriber cardrack.

All cards in a CB 901 system are of plug-in type, interwired via the motherboard in each cardrack.

The common basic cardset comprises 7 different types of printed circuit cards, which are briefly described in the following:
PROCESSOR CARD This card contains the microprocessor (MC 68000 series), its programme and memory. The 512 K bytes programme, which controls all computer operations is located in 4 PROMs (Programmable Read Only Memories). The operating system is MTOS and the programme is written in high level language C.

It contains the main oscillator (10.7 MHz) and provides all timing signals in the central unit. In this way the system is synchronized all the way through, which minimizes noise generation on the audio links.

This card sets up/disconnects links, directed by the processor. It handles the PAM (Pulse Amplitude Modulation) sampling control for all links. There are 32 time-slots in the sytem. One time-slot is allocated by the subscriber scanner and one for the tone receiver, leaving 30 time-slots for audio connections. This means that there is room for 15 simultaneous audio links.

The duplex voice control circuits are located on this card, together with the reciever and
AUDIO CONTROL CARD

LINK CARD

POWER CARD

SUBSCRIBER CARD

PROGRAMME DISTRIBUTION CONTROL CARD

The duplex control circuit operates individually for each time-slot, which is much faster than the processor can manage. Therefore, a separate control system is included on this card.

It connects the audio signals between the subscribers. Each card handles 8 links and there are always 2 link cards in the central unit.

It contains a switching power supply, synchronized with the main oscillator to minimize noise. Input to the card is 25-28V DC.

It terminates the lines for 8 subscribers, and is the interface card between the stations and the central unit. The card splits up the audio/signalling information to/from the subscribers. All subscriber cards are identical.

In a fully equipped CB 901 system there is room for 2 more card types, which are:
It interfaces the intercom system to an external programme source and allows the subscribers to activate and connect programme- (music) and alarm channels. Implementing this feature to the system will reduce the total number of subscribers by 8 per stage.

The distance between Digital Network Interface Card (installed in the Basic Cardrack in a stage) is up to 7.2 km . For analog configuration the Analog Interlink Card NFE1545 is used. The distance between each stage is 1.5 km . Both type of cards contain 8 audio links used between stages in a Double-Stage System CB 901-2 (one card in each stage) and Triple-Stage System CB 903 (two cards in each stage).

Two different types of CB901 cardrack configurations are available from Ring Master:

2. STATIONS

The stations are basically divided into two categories; Master Stations and Sub Stations.
Master Stations - able to make calls or to receive calls from any other call number. Sub Stations - for receiving calls only, from any master station. Some substations have keypad with limited call access (station with auto-dialling and stations with direct access feature).

A variety of models are available. These include two Master Stations designed for desk or wall-mounting;

- AA960, station with 8-character alphanumeric display
- AA904 station without display, but utilizing the same standard features as the AA960 model,
a flush-mounted unit AA903, an industrial heavy-duty station AA906, one light industrial station AA905, ex-proof station AA908 and substations for desktop or wallmounted use, and remote microphone units and door substations.

operating the STATION

Each master station is equipped with a keyboard with full international standards, simple push-button dialling process places all the features at the user's finger tips.

Making a call, the user presses the button corresponding to the first digit of the desired call number. Dial access is virtually instantaneous since all station positions are scanned continuously. On receiving a steady dialling tone, the user continues dialling.

Call connection is indicated in both the initiating and the receiving station by a warning tone and a station lamp which remains lit until the call is cancelled by either party pressing X. Should the link be busy, the caller receives an intermittent tone. A continuous warbling tone indicates, that a station is placed in privacy, wishing to remain undisturbed.

Fig. 1.5. Display Station AA960

The following station models are available, please see the GUIDE TO RING-MASTER SYSTEM RM5000 or TECHNICAL MANUAL, OPTIONAL EQUIPMENTfor more details:

AA903 Flush-mountedMaster Station
AA905B Light Industrial Master Station, Surface
AA905C Light Industrial Master Station, Flush
AA906 Heavy-Duty Industrial Master Station
AA911-F Master Station w/polyester film front, Flush
AA912 Light Industrial Master Station, Surface
AA912-F Light Industrial Master Station, Flush
AA916 Desk/Wall Master Station without display
AA960 Desk/Wall Master Station with display
AA961 Industrial Master Station with display, Surface
AA961-F Industrial Master Station with display, Flush
AB923 Substation w/3 call buttons, Surface
AB923-F Substation w/3 call buttons, Flush
AB931 Vandal-proof station w/1 call button, Surface
AB931-F Vandal-proof station w/1 call button, Flush
AB933 Vandal-proof station w/3 call button, Surface
AB933-F Vandal-proof station w/3call button, Flush
AB931A Door station w/1 call button, Surface
AB931A-FDoor proof station w/1 call button, Flush
AB933A Door station w/3 call button, Surface
AB933A-FDoor station w/3 call button, Flush
AE111 VISICALL, Direct Dialling Unit
AF103 Explosion-proof Master Station

3. INSTALLATION

- Standard Cardrack configuration, Basic Cardrack DP978 and Subs. Cardrack DP980
- EMC Approved Cardrack configuration, Basic Cardrack DP991 and Subscriber CardrackDP992.
The units are CE marked and complies with these standards in the EMC Directive:
EMISSION; EN-50081-1 (EN 55022/CISPR 22, Class b), and
IMMUNITY; EN-50082-1, (IEC 801-2, IEC 801-3 and IEC 801-4.
The 19" card cassetts used in the EMC approved cardracks are produced by
ELMA. The Motherboard and all Subscriber- and Interface Cards are identical to those used in the standard configuration.
Please see paragraph 1.14: Installing EMC approved cardracks DP991 and DP992 for installation details.

3.1. INSTALLATION PLANNING

Proper planning minimizes the time required and costs incurred during an installation. In the long term, maintenance, changes and expansion can be accomplished efficiently when planned for prior to the initial installation. This results in customer satisfaction and goodwill through a minimum disruption of their business activities. Ultimately, customer satisfaction results in additional sales.
Each customer's facility is different, and requires a tailored approach to ensure that the job runs smoothly. Each facility will have its own combination of circumstances which must be addressed. Table below summarizes the major stages of a typical intercom installation. The sequence in which the stages are accomplished, or the work accomplished in each stage itself, can be modified to reflect the particular circumstances of each intallation. However, the general approach should include the installation stages listed below:

STEP INSTALLATION

1. Site survey and data collection.
2. Plan major equipment layout. (Central, system power supply, and position of the variuos stations, speakers, etc.)
3. Plan cable routing.
4. Preparation and preassembly of central and power supply at shop facility.
5. Site work:
a. Running of station cables
b. Equipment mounting (central, power supply, etc.)
c. Station and speaker installation
d. System programming and adjustment
6. System checkout and commissioning
7. Customer introduction and training.

3.2. CENTRAL LOCATION
 A summary of the environmental factors affecting the Ring-Master CB901 system is presented in the listing below. These factors must be considered when developing a detailed system plan.
 Site preparation is dependent upon the customer's facilities. In many cases, there may be only one location where the central and power supply (or transformer) can be mounted. However, when several locations are possible, the advantages and disadvantages of each location should be considered. Consider each of the following factors:

NON-STRUCTURAL CONSIDERATIONS:
A. The central and power supply must be wall mounted.
B. Location of the majority of stations, locate the central strategically, so that you can minimize the length of cable runs.
C. Location of existing telephone ducts or conduit.
D. The AC line should be dedicated exclusively to the system. If the line is equipped with a circuit breaker at the service entrance panel, the circuit breaker switch should be labeled «DO NOT TURN OFF».
E. The equipment should be installed in an area that has adequate ventilation. A temperature range of $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ to $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ and humidity range of 30% to 90% relative must be maintained.
F. Appropriate lighting conditions and adequate working space should be provided for future service calls.
G. Consideration must be given to those conditions that may cause damage to the equipment. For example, dust or vapor from flammable or corrosive solvent may cause damage. The installation site should not be located in an area likely to be flooded or likely to be damaged by moving objects nearby.
H. The central should NOT be installed in an area near electrical noise including equipment, i.e., heavy motors, welders, dimmers, radio transmitters etc.
I. The power supply (or transformer) must be mounted ABOVE the central. This is to prevent overheating the central.

3.3. CABLING REQUIREMENTS

Each station is connected to the central by 4 leads (in two twisted pairs). See Fi1. 3.8.

Leads No. 1 and No. 2. Audio and signalling.

Individual leads i.e., a separate twisted pair is required for each station. Galvanically connected to 3M subscriber terminals of flat cables BF 925 in the central, these pairs carry tone-signalling (CCITT norm.) for dialling, audio transmission and DC control signals for stations.

The maximum loop-resistance of this pair is 240 ohm corresponding to approx. 2 km cable-length from station to central, using normal telephone cabling with 0.6 mm diam. wiring. If the actual distance is more than 2 km . (loop resistance more than 240 ohm) doubling this audio pair (or using heavier cable) can cause incorrect dialing transmission, since the capacitance in the cable is also increased. Doubling is not recommended. If cable to a station passes close to radio aerials or other interference sources, the leads to the actual station should be shielded.

Leads No. 3 and No. 4. Station Operating Voltage.

These leads carry operating voltage to the stations. The maximum/ minimum station voltage for proper operation is $28,5-21 \mathrm{~V}$. This allows a loop resistance between each station and power supply (centralized or local) of 40 ohm, giving a distance of 350 meters on 0.6 mm copper wire and 600 m on 0.8 mm . (based on power supply output of 27VDC).

The wire dimensions for stations located further from the central must be increased accordingly. However, independant local DC power supplies can be used for distant stations. No referance wiring between local and central power supplies is required.

Important Note: If a number of stations are powered from a common/parallel DC power pair, voltage fluctuations can result in incidental crosstalk. Therefore it is essential that a separate power pair is always used for each station.

3.4. INSTALLATION OF CENTRAL EXCHANGE.

Each basic cardrack and subscriber cardrack consists of two main parts: a metal backplate and a front cardrack (which secures to the backplate with 2 screws) that swivels outward, giving access behind the motherboard during maintenance.

Check for signs of physical damage when unpacking the central. In particular check the long contact-pins on the rear of the motherboards NFE 1522, NFE 1523A and NFE 1524A for possible distortion that may cause short-circuiting.

NOTE: To facilitate station cable connections and installation of cards, it is recommended that the cardrack is unscrewed and separated from the backplate during the initial installation procedures.

3.5. MOUNTING THE CARDRACK BACKPLATE.

Four holes in the backplate are provided for mounting on a wall or 19" rack. The position of the cardracks should allow for easy access of incoming station cables.

Check that the following components are mounted on the backplate:
a. Two brackets for station connection terminals.
b. One bracket, in which a printed circuit card is mounted. This board provides fuse holders (1.6 amp), connecting lugs for station power, and screw terminals for voltage from external power supply.

Now mount the backplate, as follows:
a. Drill holes corresponding to the backplate in the wall.
b. Mount the backplate (see note).

NOTE: The four screws required for wall mounting the central unit are not provided. Be certain that the screws used can support the central unit.

When using two cardracks for a central unit, two 20-pair flat cables (NMF6002) is supplied with DP 980 Cardrack to connect the two units together. The cables have a fixed length, thus limiting the distance between the cardracks to approximately 10-12 $\mathrm{cm}(4-4,5$ inches). (See Fig. 1.6, 1.7). The top pin of Cable no. 1 in each pin row will not be connected.
The backplate is now ready for station wiring.

3.6. CABLE TERMINATION IN STATION SOCKETS (See Fig. 1.8.)

Station type: Master Station AA960 w/display - modular 8 pin RJ45 socket.
Leads No. 1 and No. 2 - Audio Signalling Leads
Lead No. 1 to be connected to pin No. 5 in the RJ45 station socket.
Lead No. 2 to be connected to pin No. 4 in the RJ45 station socket.

Leads No. 3 and No. 4 - Station Operation Voltage.

Lead No. 3 is positive and must be connected to pin No 3 in the RJ45 socket.
Lead No. 4 is negative and must be connected to pin No. 6 in the RJ45 socket.

Station type: All station types (Sub- and Master) using Hirschmann 6 pin socket
 Leads No. 1 and No. 2 - Audio Signalling Leads

Lead No. 1 to be connected to pin No. 1 in the Hirschmann socket.
Lead No. 2 to be connected to pin No. 5 in the Hirschmann socket.
Leads No. 3 and No. 4 - Station Operation Voltage.
Lead No. 3 is positive and must be connected to pin No 3 in the socket.
Lead No. 4 is negative and must be connected to pin No. 6 in the socket.
NOTE: Always use a separate power pair for each station to the DC power source, to avoid crosstalk.

If an extra loudspeaker is required in parallel to the station's speaker, connect to pins 1 and 2 on the RJ45 wall socket or to pin 5 and 6 on the Hirschmann wall socket. Note, min. impedance 16 ohm.

NOTE: It is stressed that the station's built-in output amplifier shall not be overloaded. Therefore, when an extra speaker is used, the station's volume control shall not be set higher than half-way. If extra power is needed, an extra booster amplifier (e.g. FC 420/ 10W with independant power supply) must be inserted between pins 1 and 2 on RJ45 (or pin 5 and 6 on the Hirschmann plug) and the one or more parallel speakers.

3.7. CABLE TERMINATION IN CENTRAL CARDRACK(S).

Connection of stations' speech/signalling pair (leads 1 and 2).
Connect to the 3M terminal blocks of the flat cable straps BF 925. The 3M blocks are clipped vertically into brackets on the central's backplate and the other ends of the flat cables are plugged into corresponding vertical pin-rows on the rear of the central's motherboard. See Figure 3.9.
The 3M blocks are fitted with «knife-type» terminals requiring a special connecting tool 3M/4055 (RM cat. no QHF 1027).

To start the connections, the first 3M block will be clipped into the top/left bracket position on the backplate. This will correspond to the positions for stations with hex.pos.nos. 00-07. Each 3M block has a vertical row of 20 «knife-terminals». The first 4 (or upper) terminals are not to be used. Connecting the $1 / 2$ leads for the first of the 8 stations on the 3M block, plug into terminals 5 and 6 for station no. 00 , the second to 7 and 8 for station 01 , and so on up to no. 07 .

Removing the mounting bracket and plugging in the 3M block of BF 925 to the top left backplate position, the next 3M block will be located at the lower-left backplate position, corresponding to the wiring positions for stations with hex.position 08-0F. Once again, leaving the upper 4 terminals of the 3M block unused, repeat the procedure described above for the next 8 station's $1 / 2$ leads.

The next 3M block will be in the second from left upper position for subscriber with hex.positions 10-17, and the second lowerleft for 18-1F etc. until all subscribers are connected.

The connection positions for leads 1 and 2 in the central have hexadecimal numbering. See Fig. 1.9. for terminal layout.
See Fig. 1.10. for conversion from hexadecimal position number to decimal call number.

This basic cardrack can be reduced providing only 88 or 80 subscribers, but positions 12 and 13 have parallel card positions 21-22 in subscriber cardrack. Subscribers must either be connected in position $12 / 13$ or $21 / 22$. The subscriber cardrack will then consist of 160 subscribers (20 subscriber cards). See Figure 1.10.

Connection of stations' 24 V power pairs (leads 3 and 4).

These wire-pairs shall be connected to the terminals of the horizontal row of fuse holders on the fuse-board NFE 1560 which is fixed to the base of the central's backplate.

There are two horizontal rows of AMP-type «knife» terminals. The lower row is for leads 3 (positive) from stations, the upper row for leads 4 (negative). These are divided into blocks of 8 , serving 8 subscriber power pairs. A 1.6 Amp fuse is provided for each block of 8 subscribers, (each subscriber card). Starting on the left, the $3 / 4$ leads for the first subscriber connect the first 4-lead (negative) to the first terminal on the left of the upper row, and the 3-lead (positive) to the first terminal on the left of the lower row. A special AMP connecting tool no. 229373-4 (R.M. Cat no. QHF 1026), is required for terminal connections.

3.8. INSTALLATION OF THE CARDRACK.

When cable connections are completed, mount the rack to the backplate with the 2 (swivel) screws. Two magnets are fixed to the rear of the rack to hold it in closed position. Swivel the rack open to permit the BF 925 flat cables to be plugged into their relative pin-row positions on the rear of the motherboard. Take care when folding the flat cable i.e., that they remain clear of motherboard pins when the central is closed. See Figure 3.11.
Fasten the empty cardrack to the backplate with the two screws in the right hand corner. The cardrack can now be swung open to the right. The two magnets on the left hand side will lock the cardrack to the backplate when it is swung to closed position.

3.9. POWER UNIT SPECS, CENTRAL AND STATION POWER NEEDS AND CONNECTION OF POWER UNITS.

Although Ring-Master systems normally function on 24 VDC, power units shall be adjusted to 27 VDC which is the correct charging voltage when systems are connected to batteries for group/ all-call or no-break battery back-up. Using 27 V also permits longer cabling from stations to central with a 3 V tolerance to 24 V contral voltage drop on longer cable runs. Ring-Master AS supplies a standard DC power unit LA 924 which is factory-adjusted to 27 V and can supply 4 Amp . It is adjustable between 20 and 30 Volt, using the potentiometer R28. A smaller power unit NLA 1037 is also available for local use with remote stations, giving 0.5 Amp DC, i.e., adequate for max. 3 stations. Power units can also be purchased locally provided that they meet the specifications for supplying Ring-Master systems,- e.g., regulated, and with a max. ripple/noise level of 30 mV peak to peak.
Note. The power unit should be equipped with overvoltage protection.

POWERREQUIREMENTS.

These can basically be divided as follows:
A. Power for central units.
B. Power for stations.
C. Power for systems with «stand-by» battery back-up.

Central unit and stations can be supplied from a common 27 VDC power source, but it is strongly recommended that two separate power supplies are used. This is to prevent eventual voltage fluctuations or distortions that can occur in station cabling, (inductive voltage with spikes etc.) and which can cause incidential interference in the centrals' computerfunctions.

A. Power for central units:

Central power needs for a single stage CB 901 equipped with the Basic Cassette DP979 only (max. 96 subscribers), will need one LA 925, (4 Amp.). See Fig. 1.12. If a Subscriber Cassette DP 980 is added to the central or stage, 4 Amp . is needed, and a second LA 925 is required per central or stage. See Figure C13.

Power is connected to screw terminals on the motherboard NFE 1523A (in DP 979) marked + and - 12 Volt. Note, -0 terminal is not used. It is stressed that the power supplies for centrals/stages quoted above will always be needed in addition to the power units for stations below.

B. Power for stations:

Power needs for stations are based upon the basic figure of 150 mA per station. Station power needs can be divided into 3 categories as follows:

1. If a central or stage is not equipped for Alarm/Progr.distr. and shall not be using all-call or group-call, the max. current need for stations will be:
a. With Basic Cardrack DP 979 only (96 subscr.) $=4$ Amp,- one LA 925.
b. With both Basic and Subscriber Cardrack (239 subscr.) = 8 Amp,- two LA 925.
2. Centrals or stages not equipped for Alarm/Progr.distr., but using all or groupcall. Since such calls are of short duration, the central or stage can be equipped with max. 2xLA 925 for normal calls, plus one or more extra LA 925's to charge a suitable battery which is used during all-calls or group-calls. Naturally, the requirements of power units and battery capacity will vary in relation to the number of stations in a system, number of stations receiving allcall or group call and the frequency of all-call or group-call messages. Refer to table Fig. 1.14. for number of LA 925s and relative battery capacity. All LA 925 shall be connected in parallel and adjusted to 27 Volt.
3. Centrals equipped for Alarm/Programme Distribution: A CB 901 system with 239 stations will have a max. current need of $240 \times 150 \mathrm{~mA} .=36$ Amp. $=9$ LA 925 or appropriate local power supply.

Power to stations is connected to screw terminals on the fuse board NFE 1560 (DP 979 and DP 980) marked + and -.
Remote local power supply to stations. A station or a group of stations can be connected to remote power units. If the central is programmed with all or group call, all stations in such a group can be switched on simultaneously and the power unit must be dimensioned accordingly, i.e., at 150 mA per station.

C. Power for systems with «stand-by» battery back-up.

In case of mains failure, both the central unit and all stations must function from a common battery. Consequently the capacities of the battery and the charger (power supply) are totally dependent upon several factors,- station capacity, traffic density, discharging and recharging period of battery. See Fig .3.16. an 13.17. for details. PowerCheck.
Turn on the mains and check the polarity on the +12 V and -12 V screw terminals. Check also the polarity on the power connections to the stations. Turn off mains again.

3.10. PLUGGING IN PRINTED CIRCUIT CARDS.

Plug the cards into the cardracks according to the actual central size. See Fig. 1.10 for correct card positioning. Make sure that all cards are properly pressed into the plugs on the motherboard when using two cardracks for a complete stage. Note that card positions 12/13 and 21/22 have the same station equipment number ($50-57$ and $58-5 \mathrm{~F}$). You must therefore only plug subscriber cards into one of the positions 12/13 or 21/22.

We advise positions 21/22 to be used, this leaving room in the basic cardrack for the future connection of interlink cards in CB 901-2 / CB 901-3 / CB 901-M systems.

3.11. INSTALLATION OF PROGRAMME DISTRIBUTION CARD DP977. TERMINATION OF AUDIO SIGNALS FOR THIS FEATURE.

The Programme Distribution Control Card DP 977 is installed in the Basic Cardrack DP 979. This card distributes the Alarm/programme audio signal to all the subscribers from the selected programme sources,- 2 alarmchannel and 8 programme channels. Observe that in CB 901-2/CB 901-2/CB 901-M systems a DP 977 (NFE 1626) must be installed in each stage. Each slave stage can distribute different programme sources. No extra cabling between slave stages, or MCA unit and slave stages is necessary for the Alarm/ Progr.distr. facility. To make use of the Alarm/Program.distr. feature a subscriber must be terminated to a subscriber card of the type NFE 1625. The previous subscriber card NFE 1525 can be used in DP 979/ DP 980, but will not give access to this facility. These subscriber cards can be mixed in the system.

Additional cabling is needed for the Alarm/Program.distr. facility in each stage.

INTERCONNECTION CABLE, INTERNAL ON MOTHERBOARD NFE $1523 A$.

The Programme Destribution Card NFE 1626 is normally installed in card position 10 (plug.pos XA11) in the Basic Cardrack DP 979. If the central is fully equipped with subscriber cards (30 cards), this feature card is to be installed in pos. 12 or 13.

In CB 901-2/CB 901-3/CB 901-M systems the card positions 12 and 13 are used for Interlink B Card NFE 1545. In CB 901-1, the Subscriber Card NFE 1625 can be installed in these positions, giving a total of 88 subscribers in the Basic Cardrack. If subscribers in these positions want to make use of the Alarm/programme Distribution Feature, a special flat cable, 20 pair with 4 connectors, must be installed between cardpos. 10, 11, 12 and 13 - plug P1, pins 1A/B to 20 A/B at the back of the Motherboard NFE 1523A. This cable NMF 6012 is included in DP 977 together with the Program Distribution Card NFE 1626. When this cable is installed, to utilize plug positions for subscriber connection, the Programme Distribution Card NFE 1626 can be installed in any position from 10 to 13 incl . If no cable is installed this card must be placed in card pos. 10. This cable must not be used in CB 901-2/CB 901-3/CB 901-M systems. See Figure 3.18. for cable location.

termination of audio and control signals to programme DISTRIBUTIONCARDNFE 1626.

Two Subscriber Cables BF 925 are used for termination to the Programme Distribution Card NFE 1626, at the back of the Motherboard NFE 1523A.

Cable no. 1 for audio signals to alarm- and programme channels. See Fig 3.18. for cable location and wiring details. The max. input level on alarm channel is 770 mV RMS (cable no. 1, pins 9A/B - 10A/B).

Cable no. 2 for control signals to alarm- and programme channels.
See Fig. 1.18. for cable location and wiring details. The max. input level on programme channels is 100 mV RMS (cable no 1 , pins $1 \mathrm{~A} / \mathrm{B}-8 \mathrm{~A} / \mathrm{B}$)

To activate alarm channel no. 1 (top priority) 24 V DC must be supplied to pins $32 \mathrm{~A} / \mathrm{B}$ on cable no. 2, positive to pin 32A. Audio signal from alarm source no. 1 (cable no. 1, pins 9A/B) will be transmitted to all stations.

To activate alarm channel no. 2, 24 V DC must be supplied to pins $31 \mathrm{~A} / \mathrm{B}$ on cable no 2, positive to 31A. Audio signal from alarm source no. 2 (cable no. 1, pin $10 \mathrm{~A} / \mathrm{B}$) will be transmitted to all stations.

Alarm channels have top priority in the system. All other activity, programme distribution, all-call, group-call and normal calls will be overridden. Alarm channel no. 1 has priority over alarm channel no. 2. To deactivate an alarm channel the 24V DC «enable signal» must be disconnected (back to open circuit on «alarm enable» input).

Battery Operation Function - cable no. 2. When CB 901-1 Systems are installed as nobreak system (connected to emergency power - battery bank) it is important to cut out the Programme Distribution Feature when there is a mains power failure. During this period, all stations using this feature must be suspended from the programme channels, otherwise the emergency battery could be overloaded. Alarm channels will operate. Each station has a current consumption of approx. 150 mA . When mains voltage returns, the stations will automatically be reconnected to the programme channels. If the Programme Distribution «cut out» function is required, do the following:

1. Disconnect Diode D1 on Programme Distribution Card NFE 1626.
2. Install a separate small power supply/rectifier of $5-24 \mathrm{~V}$ DC. Connect the output voltage to the Battery Operation function, cable no. 2 - pins 30A/B, positive to pin 30A. See Fig. 1.18. for details.

When there is a mains power failure, the voltage (5-24DC) from the separate power supply is missing and the Programme Distribution function is disabled. Stations connected to the programme channels are canceled, but will be reconnected when mains power is restored.
NOTE. This function may also be operated by the management to allow for programme listening during lunch time, coffe-brakes etc.

CENTRALPOWERSUPPLY.

The power requirement for a system with Alarm/Programme Distribution facility is similar to an ordinary CB 901-1 system without programme distrubution feature.

STATION POWER SUPPLY.

When a Ring-Master System CB 901/2/3 is equipped with Alarm/ Programme Distribution feature, the station power supply has to be dimensioned accordingly. In a fully equipped ordinary (without Alarm/Programme Distr.) Ring-Master System CB 901-1 a maximum of 30 stations can be connected simultaneously in conversations - all 15 links engaged. In an Alarm/ Programme Distribution System all stations can simultaneously be connected to programme channels - 240 stations. The total power consumption will then be approx. 36 Amp. ($240 \times 0,150$ A).

IMPORTANT—STATION POWER CALCULATION.

Each station with access to Alarm/Programme Distribution Feature requires 150 mA .
Each station in normal conversation requires 150 mA
Each station in rest condition requires 15 mA .

IMPORTANTNOTES:

1. Check the +5 V fuse on Power Card NFE 1528. The fuse is named F1 and must be 1 Amp - not 0,5 Amp as on the original version of this card.
2. Function of All/Group call in systems with Alarm/Programme feature (equipped with Subscriber Card NFE 1625).

To initiate these features the Programme Distribution Card NFE 1626 must be installed in the system, or if not - make a strap on the back side of Motherboar NFE 1523A in card position 10 (plug pos. XA11) between

Plug P1, pin 10A and
Plug P2, pin 16B.

In addition:

To transfer all/group call signals to subscribers connected to cards in position 11, 12 and 13 the flat cable NMF 6012 (part of DP 977) must be installed on the back side of the Basic Cardrack DP 979. If no cable is available, make a jumper between:

Plug P1, pin 10A on card no. 10 to
Plug P1, pin 10A on card no. 11 to
Plug P1, pin 10A on card no. 12 to
Plug P1, pin 10A on card no. 13.

3.12. POWER ON AND SYSTEM CHECK.

NOTE: Always turn OFF the central power (NFE 1528) before plugging the cards in or out of the cardracks.
A. Pull all NFE1625/NFE 1525 cards out of the plugs (approx. one inch) except the card in position No. 2. Test one card position at a time.
B. Plug the flat cable, which is fixed to the $3 M$ terminal mounted in the upper left hand corner of the backplate, into positions $00-07$ on the back of the cassette motherboard.
C. Switch on mains.
D. Ensure that the standard programme is written into the memory on
the CPU Card NFE 1683 when power is switched on. Set switch no. 8 (switch package U49) in position ON. See SVT Programming Manual.
E. Switch on the central power by operating the switch on the power card NFE 1528 (in card position 1).

Any number of LEDs may light up. This is normal and they will extinguish after a few seconds.

Only a few LEDs will be indicating in accordance with the following list, starting with the processor card to the left.

NFE 1683 The upper LED will be ON The lower LED will be blinking
NFE 1606 The lower LED will be blinking
NFE 1521 No. 1 All LEDs stay dark
NFE 1521 No. 2 The upper LED will be steady on All the others will stay off
NFE 1525/1625 All LEDs on all subscriber cards stay off
NFE 1528 The four upper LEDs will be steady on The lowest one will be off

If these indications are not present, switch off power on the central power card and check that all cards are properly pressed into the plugs on the motherboard. Switch on power again. If still not normal, restart the system. Put switch no. 8 on switchpackage U49 on CPU card NFE 1683 in position ON. Press the Reset button (SW9, located on the edge of the card). This will restart the processor manually. We will now assume that the indications are normal.

Make a call between, for example, the two stations in posistions 00 and 01 . They will have call numbers depending on the number of digits selected in the system (U19 on NFE 1606)
This is the first check to see if the system is «alive».
Plug in the rest of the NFE1625/NFE 1525 cards, one by one and connect the corresponding flat cable to the back of the motherboard in the cardrack. Make a call between the stations in positions 00 and 01.

3.13. ADJUSTMENT

Normally no adjustments are necessary, but it is advisable to check status of:
A. The -5V Level Measure on the motherboard, on the plug of the programming card (card position 20) that the exact value of the -5 V . 0 V is on pin No. 3a/b and -5 V is on pin $1 \mathrm{a} / \mathrm{b}$. Both on plug P 1 (the lower plug). The correct voltage to measure is between 5,0 and $5,1 \mathrm{~V}$. If adjustment is necessary, turn pot.meter R17 on power card NFE1528.
B. Duplex Switching. It is necessary to check the audio control card NFE 1607 for proper duplex switching.

1. Set up a conversation to a station in a room (office) with normal ambient noise level.
2. Press down the microphone cut-off switch (privacy switch) on the initiating station. The background noise from the receiving station should now be heard in the loudspeaker of the initiating station.
3. Turn pot.meter R 56 on NFE 1607 card (on front of the card) until the noise just disappears.
NOTE: This adjustment cannot of course compensate for noise from machinery, noisy airconditioners etc.
C. Adjustment of warning tone level.

Adjust pot. meter R57 to a pleasant volume on the warning tone.

3.14. INSTALLING EMC APPROVED CARDRACKS DP991 AND DP992.

When required, the CB901 system can be delivered with EMC approved cardracks:

- Basic Cardrack DP991 (replacing standard cardrack DP979)
- Subscriber Cardrack DP992 (replacing standard cardrack DP980).

These cardracks are produced by ELMA and are EMC tested to comply with the standards: (see Fig. 1.20 for CB901 EMC Layout).
The units are CE marked and complies with these standards in the EMC Directive:
EMISSION; EN-50081-1 (EN 55022/CISPR 22, Class b), and
IMMUNITY; EN-50082-1, (IEC 801-2, IEC 801-3 and IEC 801-4.
The Motherboard and all Subscriber- and Interface Cards are identical to those used in the standard configuration.

WARNING: It is extremely important to follow the instruction in this chapter in detail, otherwise the EMC approval will not be valid. All equipment supplied must be used, no replacement will be accepted
The following is a list of the equipment used in a EMC approved CB901 system.
DP991 Basic Cardrack
DP992 Subscriber Cardrack
BF950 Internal Subscriber Cable (between two subscriber positions on the Motherboard NFE1523A/NFE1524A and one Filter Adaptor BF951 in the backplate. Adequate for 2 Subscriber Cards/16 subscriber lines).

BF951 Filter Adaptor for Subscriber-, Programme Distribution/Alarm- and RS232 connections.

BF952 External Subscriber Cable (between Filter Adaptor BF951 in the backplate and the MDF distribution frame. Length 3 meter.

BF952A External Subscriber Cable (between Filter Adaptor BF951 in the backplate and the MDF distribution frame. Length 10 meter.

BF954 Internal System Cable for Program Distribution/Alarm Signals, (from the Mother-board NFE1523A to the backplate).

BF955 Internal System Cable for Data Signals and Power Supply, (from the Motherbord NFE1523A and the back plate).

BF956 External Interconnection Cable for System and Program Distribution/Alarm signals.

BF957 Internal RS232 Cable, (between the Motherboard NFE1523A (CPU position) and the Filter Adaptor BF951 in the back plate).

BF958 Internal Programme Distribution/Alarm Signal Cable (between the Filter Adaptor BF951 in the back plate and the subscriber position in the Motherboard NFE1523A for the Programme Distribution/Alarm Card DP977.

Reference is made to paragraphs 3.1 to 3.13 for general installation details. The EMC approved configuration required the following special installation adjustments:

INSTALLING THE CARDRACKS DP991 AND DP992.

The Cardracks DP991 and DP992 must be installed in a 19" rack. The position of the 19 " rack should allow for easy access of incoming station cables.

INSTALLING THE FILTER ADAPTER BF951 IN BASIC CARDRACK DP9991.

The Filter Adapter BF951 is used for termination in the cardrack DP991's backplate for:

- subscriber lines
- program distribution/alarm signals
- RS232 signals from CPU card

The cardracks are supplied with blind covers for all filter adapter positions and for the positions for the interconnection cables between the two cardracks DP991 and DP992. Remove the blind cover and install the corresponding filter adapter. Note that one fiter adapter can support two subscriber cards (16 subscribers).

See Fig. 1.21 for Filter Adaptor BP951 layout in the Basic Cardrack DP991.

INSTALLING THE FILTER ADAPTER BF951 IN SUBSCRIBER CARDRACK DP992. The Filter Adapter BF951 is used for termination in the cardrack DP992's backplate for: - subscriber lines

The cardracks are supplied with blind cover for all filter adapter positions. Remove the blind cover and install the corresponding filter adapter. Note that one filter adapter can support two subscriber cards (16 subscribers).

See Fig. 1.21 for Filter Adapter BP951 layout in the Subscriber Cardrack DP992.

[^1]37 pin D-sub male connector into the Filter Adapter BF951 in the back plate. The upper 20 pin flat cable connector (D-sub pin nos. 1/20-8/27) should be plugged into the first subscriber card position on the Motherboard NFE1523A/NFE1524A. The lower 20 pin flat cable connector (D-sub pin nos. 9/28-16/35) should be plugged into the second subscriber card position on the Motherboerd NFE1523A/NFE1524A.
The colour marking of the flat cable must be facing down.
See Fig. 1.22 for installation details.

 DISTRIBUTION/ALARM SIGNALSIN BASIC CARDRACK DP991.When a CB901 system requires the additional Subscriber Cardrack DP992 (more than 96 subscribers), the cardracks DP991 and DP992 must be interconnected, (data and programme distribution signals) via the system cable BF954. Remove the blind cover in the back plate (see Fig. 1.21). Install the 50 pin D-sub male connector into the back plate. Plug the 40 pin flat cable connector into the dedicated position on the Motherboard NFE1523A, (plug position marked XA19, lower plug row, on the pcb.). The 40 pin connector should be plugged in between pin row $1 A / B$ and $20 A / B$ of the 32 pin rows in card position XA19. The colour marking of the flat cable must be facing down.
The BF954 cable is delivered from factory as a part of the Subscriber Cardrack DP992.
See Fig. 1.23 for installation details.
Note. The Subscriber Cardrack DP992 is prewired from the factory. The internal bus cable for programme distribution is installed between the Motherboard NFE1524A (plug position XA21, lower plug row) and the cardrack's back plate.

INSTALLING THE INTERNAL BUS CABLE BF955 FOR SYSTEM SIGNALS IN BASIC CARDRACKDP991.

When a CB901 system requires the additional Subscriber Cardrack DP992 (more than 96 subscribers), the cardracks DP991 and DP992 must be interconnected, (data signals) via the cable BF955. Remove the blind cover in the back plate (see Fig. 1.21). Install the 50 pin D-sub male connector into the back plate. Plug the 40 pin flat cable connector into the dedicated position on the Motherboard NFE1523A, (plug position marked XA21, upper plug row, on the pcb.).
The 40 pin connector should be plugged in between pin $12 \mathrm{~A} / \mathrm{B}$ and $31 \mathrm{~A} / \mathrm{B}$ of the 32 pin rows in card position XA19. The upper pins 32 A/B MUST not be used.
The colour marking of the flat cable must be facing down.
See Fig. 1.23 for details.
The first 5 wires of the 10 wire flat cable must be soldered to the 0 Volt on the Motherboard NFE1523A. 0 volt is pins 1A/B to 4A/B on the card connector in position XA21, lower plug row (P1).
The last 5 wires of the 10 wire flat cable must be soldered to the -5 Volt on the Motherboard NFE1523A. -5 volt is pins 8A/B to 10A/B on the card connector in position XA21, lower plug row (P1).
See Fig. 1.23 for details.
The BF955 cable is delivered from factory as a part of the Subscriber Cardrack DP992.
Note. The Subscriber Cardrack DP992 is prewired from the factory. The internal bus cable for programme distribution is installed between the Motherboard NFE1524A (plug position XA21, upper plug row) and the cardrack's back plate.

INSTALLING THE INTERNAL RS232 CABLE BF957 IN BASIC CARDRACK DP991.

When a CB901 system requires connection to external devices (computer, printer, paging etc) the internal RS232 cable BF957 must be installed. Remove the blind cover in the back plate (see Fig. 1.21). Install a Filter Adapter BF951. Plug the 37 pin D-sub male connector into the Filter Adapter. Plug the 24 pin flat cable connector into the Motherboard NFE1523A, plug position of the CPU Card NFE1683, (plug position marked XA2, upper plug row P 2 , on the pcb). The connector should be plugged in between pin row 16A/B and 27A/B. Plug the 14 pin flat cable connector into the same plug position, but between pin row $1 A / B$ and $7 A / B$. The colour marking of the flat cables must be facing down.
See Fig. 1.24 for installation details.

INSTALLING THE INTERNAL CABLE BF958FOR PROGRAMME DISTRIBUTION/ ALARMINBASIC CARDRACK DP991.
When a CB901 system operates with the Programme Distribution/Alarm feature the internal cable BF958 must be installed. Remove the blind cover in the back plate (see Fig. 1.21). Install a Filter Adapter BF951. Plug the 37 pin D-sub male connector into the Filter Adapter. Plug the upper 20 pin flat cable connector into the Motherboard NFE1523A, plug position of the Programme Distribution/Alarm Card NFE1626, (card position marked XA11, upper plug row P2, on the pcb). Plug the lower 20 pin flat cable connector into the same card position, but to the lower plug row P 1 , between pin row 32A/B and 23A/B. The colour marking of the flat cables must be facing down.

See Fig. 1.25 for installation details.

INSTALLING THE EXTERNAL SYSTEM BUS CABLE BF956 FOR DATA AND PROGRAMME DISTRIBUTION/ALARMSIGNALS BETWEEN BASICCARDRACK DP991 AND SUBSCRIBER CARDRACK DP992.

When a CB901 system requires the additional Subscriber Cardrack DP992 (more than 96 subscribers), the cardracks DP991 and DP992 must be interconnected, (data and pogramme distribution signals) via system bus cables BF956. Two cables are needed, one for interconnecting the data signals and for the programme distribution/alarm signals.

The BF956 cables are delivered from factory as a part of the Subscriber Cardrack DP992.
See fig 3.26

INSTALLING THE EXTERNAL RS232 CABLE BF952/BF952A INBASIC CARDRACK DP991.

When a CB901 system requires connection to external devices (computer, printer, paging etc) the External Subscriber Cable BF952 (3 meter) or BF952A (10 meter) must be installed. These cables are the same as used for subscriber termination and for programme distribution/data. Plug the 37 pin D-sub female connector into the Filter Adapter BF951 in the back plate. See Fig. 1.21. The other end of the cable is ending in loose ends, where the termination is done to the external devices (or to a MDF distribution frame).

See Fig. 1.27 for termination details.

INSTALLING THE EXTERNAL PROGRAMME DISTRIBUTION/ALARM CABLE BF952/ BF953 IN BASIC CARDRACK DP991.

When a CB901 operates with the Programme Distribution/Alarm feature the External Subscriber Cable BF952 (3 meter) or BF952A (10 meter) must be used for connection to the external programme sources (radio, tapes etc.). These cables are the same as used for subscriber termination. Plug the 37 pin D-sub female connector into the Filter Adapter BF951 in the back plate. See Fig. 1.21. The other end of the cable is ending in loose ends, where the termination is done to the external devices (or to a MDF - distribution frame).

See Fig. 1.28 for termination details.

INSTALLING THE EXTERNALSUBSCRIBER CABLE BF952/BF953 IN BASIC CARDRACK DP991 AND INSUBSCRIBER CARDRACK DP992

The External Subscriber Cables BF952 (3 meter) and BF952A (10 meter) are used for subscriber termination. Plug the 37 pin D-sub female connector into the Filter Adapter BF951 in the back plate. Each cable is supporting 16 subscribers, 2 subscriber card. See Fig. 1.21. The other end of the cable is ending in loose ends, where the termination is done to the external MDF - distribution frame.

See Fig. 1.29 for termination details.

INSTALLING THE EMC APPROVED POWER SUPPLY LA925. TERMINATING THE POWER LEADS IN BASIC CARDRACK DP991.

Ring-Master AS supplies a EMC approved power unit LA 925 which is factory-adjusted to 27 V and can supply 5 Amp . It is adjustable between 20 and 30 Volt.
The leads from the Power Unit LA925 should be wired directly into the power screw terminal mounted in the back plate of Basic Cardrack DP991.
See Fig. 1.22 for installation details.

INSTALLING THE VENTILATION UNIT DP993.

The CB901 system should be installed in an area that has adequate ventilation. A temperature range of $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ to $25^{\circ} \mathrm{C}\left(78^{\circ} \mathrm{F}\right)$ and humidity of 30% to 90% relative must be maintained. Under such condition no additional ventilation is needed. When required, a ventilation unit DP993 with two blowers can be supplied. This is a 19" module and should be mounted on top of the Basic Cardrack DP991 and Subscriber Cardrack DP992 (if installed) The unit operates on 24V DC.
See Fig. 1.20

3.15. DISPLAY MASTER STATION AA960, CONNECTION OF EXTERNAL FUNCTIONS.

The Display station AA960 can be modified for the following functions
 - connection to external loudspeaker
 - remote control
 - external alarm input (closing contact)

Connection of external loudspeaker:

Dismantle the station. Check that a jumper is installed between pin 3 and 4 in the relay K1 position. The jumpers J 1 , J2 and J3 should be installed between terminals 1 and 2. Using the station in softspeaking mode, if the speech should be muted, the relay K1 must be mounted. The relay must be ordered separately, the order no. is NRD9077. Remove the jumpers between pins 3 and 4. Connect the external loudspeaker to pins 1 and 2 in the wall socket RJ45.
A station AA960 modified for external loudspeaker can not be modified for the "remote control" function.

Remote control: (control of external device)

Dismantle the station. Install the relay K1, the jumper between pin 3 and 4 must be removed. The jumpers $\mathrm{J} 1, \mathrm{~J} 2$ and J 3 should be installed between terminals 2 and 3 . The relay must be ordered separately, the order no. is NRD9077. The relay output will be between pin 2 and 7 in the wall socket RJ45. Do not load the relay with more than 1.2 Amp.
A station AA960 modified for "remote conrol" can not be modified for external loudspeaker.

External alarm input:

By closing an external alarm contact, a signal is transfered via the AA960 station to the central unit for activating the feature Direct Access (f.inst for the CAS function). A call will be established to a predeterminated subscriber.
No modification in the AA960 station is required. Signal from the alarm device (from a closing contact) must be terminated to the RJ45 wall socket, pin 3 and 8.

4. PROGRAMMING

Reference is made to the techn. manual: SVT PROGRAMMING MANUAL. This manual is a guide to programmimg the Ring-Master system CB 901-1 equipped with the Processor Card NFE 1683.

If the central is equipped with the previous Processor Card NFE 1628 or NFE 1592, use the PROGRAMMING MANUAL, TRICON3.

If the standard number series and standard features only are required, then a service terminal is not needed.

Programmimg of individual call numbers can be carried out using a master station AA 904 , thus eliminating the need of a service terminal to program the number series. See SVT Programming Manual.

No text on this page.

5. FINAL CHECKOUT AND COMMISSIONING THE SYSTEM

INTRODUCTION

When the system has been installed and programmed, perform the following checks to verify the operation of the system and related equipment. If the system is found to be faulty, use the following guidelines to locate the faulty station or printed circuit board(s) and replace the part. This gives minimum system downtime for the customer.

FINAL CHECK AND COMMISSIONING OF THE SYSTEM

When all cables are connected to their corresponding terminal blocks, check that these terminal blocks are properly plugged into the circuit boards. Check for 24V DC before the system is switched on (minimum/maximum voltage is 21V DC - 29V DC). Turn system switch ON and check the four upper front LEDs on the Power Card NFE 1528. All should be lit. Prepare a list of all individual programs utilized.

Once the cable connections and the central exchange voltages are verified, perform the following station tests:
a. Station receives warning tone and light when called.
b. Sound quality - in handsfree and handset modes.
c. «Handsfree» voice switching.
d. T-button manual control, press side strip for duplex mode.
e. Press privacy switch down for microphone cut-off.
f. X-button, released for cancelling.
g. Check station's privacy switch function and 0-button to accept a call, also call back to the test station while in the privacy position.
h. Check all standard and system features.
i. Check all individual programmes allotted to stations.
j. Finally, before leaving, make sure that all users have been instructed in the correct use of their station and obtain the signature of the client's responsible representative, accepting the system in full working order.

SERVICE INFORMATION

CAUTION: Always turn power OFF before changing subscriber boards in the central exchange.

The CB 901-1 system is a microprocessor controlled system and for servicing/ maintenance a certain level of such knowledge is needed together with some understanding of the software.

Remember that the system is bus organized. This means that all subscriber boards are
«wired» in parallel, except the master station connections. A fault on one of the subscriber boards may therefore cause the whole system to malfunction. For troubleshooting, follow the steps below:
a. Disconnect all the NFE 1625 (NFE 1525) Subscriber Boards.
b. Install one board at a time into the different plug positions until the faulty board is located.

A master station fault may be located in the station itself, or one the subscriber board. Check both with a known good station to pin point where the fault is.

The user can be requested NOT to use the system until an all-call announces that the system is ready for use.

CONVERTIONTABLE-STATION POSITION NO./CALL NO.

BASICCARDRACK

STATION	CARD									
POS.	POS.									
NO.	NO.	1	2	3	4	5	6	7	8	

00		1000	1256	1512	1768	2024	2280	2536	2792
01		1001	1257	1513	1769	2025	2281	2537	2793
02		1002	1258	1514	1770	2026	2282	2538	2794
03	2	1003	1259	1515	1771	2027	2283	2539	2795
04		1004	1260	1516	1772	2028	2284	2540	2796
05		1005	1261	1517	1773	2029	2285	2541	2797
06		1006	1262	1518	1774	2030	2286	2542	2798
07		1007	1263	1519	1775	2031	2287	2543	2799
08		1008	1264	1520	1776	2032	2288	2544	2800
09		1009	1265	1521	1777	2033	2289	2545	2801
OA		1010	1266	1522	1778	2034	2290	2546	2802
OB	3	1011	1267	1523	1779	2025	2291	2547	2803
0 C		1012	1268	1524	1780	2036	2292	2548	2804
OD		1013	1269	1525	1781	2037	2293	2549	2805
OE		1014	1270	1526	1782	2038	2294	2550	2806
OF		1015	1271	1527	1783	2039	2295	2551	2807
10		1016	1272	1528	1784	2040	2296	2552	2808
11		1017	1273	1529	1785	2041	2297	2553	2809
12		1018	1274	1530	1786	2042	2298	2554	2810
13	4	1019	1275	1531	1787	2043	2299	2555	2811
14		1020	1276	1532	1788	2044	2300	2556	2812
15		1021	1277	1533	1789	2045	2301	2557	2813
16		1022	1278	1534	1790	2946	2302	2558	2814
17		1023	1279	1535	1791	2047	2303	2559	2815
18		1024	1280	1536	1792	2048	2304	2560	2816
19		1025	1281	1537	1793	2049	2305	2561	2817
1A		1026	1282	1538	1794	2050	2306	2562	2818
1B	5	1027	1283	1539	1795	2051	2307	2563	2819
1 C		1028	1284	1540	1796	2052	2308	2564	2820
1D		1029	1285	1541	1797	2053	2309	2565	2821
1E		1030	1286	1542	1798	2054	2310	2566	2822
1F		1031	1287	1543	1899	2055	2311	2567	2823

CONVERTIONTABLE-STATION POSITION NO./CALL NO.

BASICCARDRACK

$\begin{aligned} & \text { STATION } \\ & \text { POS. } \\ & \text { NO. } \end{aligned}$	CARD POS. NO.	1	2	3	4	5	6	7	8
20		1032	1288	1544	1800	2056	2312	2568	2824
21		1033	1289	1545	1801	2057	2313	2569	2825
22		1034	1290	1546	1802	2958	2414	2570	2826
23	6	1035	1291	1547	1803	2059	2315	2571	2827
24		1036	1292	1548	1804	2060	2316	2572	2828
25		1037	1293	1549	1805	2061	2317	2573	2829
26		1038	1294	1550	1806	2062	2318	2574	2830
27		1039	1295	1551	1807	2063	2319	2575	2831
28		1040	1296	1552	1808	2064	2320	2576	2832
29		1041	1297	1553	1809	2065	2321	2577	2833
2A		1042	1298	1554	1810	2066	2322	2578	2834
2B	7	1043	1299	1555	1811	2027	2323	2579	2835
2 C		1044	1300	1556	1812	2068	2324	2580	2836
2 D		1045	1301	1557	1813	2069	2325	2581	2837
2E		1046	1302	1558	1814	2070	2326	2582	2838
2F		1047	1303	1559	1815	2071	2327	2583	2839
30		1048	1304	1560	1816	2072	2328	2584	2840
31		1049	1305	1561	1817	2073	2329	2585	2841
32		1050	1306	1562	1818	2074	2330	2586	2842
33	8	1051	1307	1563	1819	2075	2331	2587	2843
34		1052	1308	1564	1820	2076	2332	2588	2844
35		1053	1309	1565	1821	2077	2333	2589	2845
36		1054	1310	1566	1822	2078	2334	2590	2846
37		1055	1311	1567	1823	2079	2335	2591	2847
38		1056	1312	1568	1824	2080	2336	2592	2848
39		1057	1313	1569	1825	2081	2337	2593	2849
3A		1058	1314	1570	1826	2082	2338	2594	2850
3B	9	1059	1315	1571	1827	2083	2339	2595	2851
3 C		1060	1316	1572	1828	2084	2340	2596	2852
3D		1061	1317	1573	1829	2085	2341	2597	2853
3E		1062	1318	1574	1830	2086	2342	2598	2854
3F		1063	1319	15	1831	2087	2343	99	55

CONVERTION TABLE-STATION POSITION NO./CALL NO.

BASICCARDRACK

STATION	CARD								
POS.	POS.								
NO.	NO.	1	2	3	4	5	6	7	8

40
41
42
$43 \quad 10$
44
45
46
47

48
49
4A
4B $\quad 11$
4C
4D
4
4F

1064	1320	1576	1832	2088	2344	2600	2856
1065	1321	1577	1833	2089	2345	2601	2857
1066	1322	1578	1834	2090	2346	2602	2858
1067	1323	1579	1835	2091	2347	2603	2859
1068	1324	1580	1836	2092	2348	2604	2860
1069	1325	1581	1837	2093	2349	2605	2861
1070	1326	1582	1838	2094	2350	2606	2862
1071	1327	1583	1839	2095	2351	2607	2863
1072	1328	1584	1840	2096	2352	2608	2864
1073	1329	1585	1841	2097	2353	2609	2865
1074	1330	1586	1842	2098	2354	2610	2866
1075	1331	1587	1843	2099	2355	2611	2867
1076	1332	1588	1844	2100	2356	2612	2868
1077	1333	1589	1845	2101	2357	2613	2869
1078	1334	1590	1846	2102	2358	2614	2870
1079	1335	1591	1847	2103	2359	2615	2871

SUBSCRIBERCARDRACK

50		1080	1336	1592	1848	2104	2360	2616	2872
51		1081	1337	1593	1849	2105	2361	2617	2873
52	1082	1338	1594	1850	2106	2362	2618	2874	
53	$21(12)$	1083	1339	1595	1851	2107	2363	2619	2875
54		1084	1340	1596	1852	2108	2364	2620	2876
55		1085	1341	1597	1853	2109	2365	2621	2877
56		1086	1342	1598	1854	2110	2366	2622	2878
57		1087	1343	1599	1855	2111	2367	2623	2879
58									
59		1088	1344	1600	1856	2112	2368	2624	2880
5 A		1089	1345	1601	1857	2113	2369	2625	2881
5B	$22(13)$	1090	1346	1602	1858	2114	2370	2626	2882
5 C		134	1603	1859	2115	2371	2627	2883	
5D		1092	1348	1604	1860	2116	2372	2628	2884
5E		1093	1349	1605	1861	2117	2373	2629	2885
5F		1094	1350	1606	1862	2118	2374	2630	2886

CONVERTIONTABLE-STATION POSITION NO./CALL NO.
SUBSCRIBERCARDRACK

STATION POS. NO.	CARD POS. NO.	1	2	3	4	5	6	7	8
60		1096	1352	1608	1864	2120	2376	2632	2888
61		1097	1353	1609	1865	2121	2377	2633	2889
62		1098	1354	1610	1866	2122	2378	2634	2890
63	23	1099	1355	1611	1867	2123	2379	2635	2891
64		1100	1356	1612	1868	2124	2380	2636	2892
65		1101	1357	1613	1869	2125	2381	2637	2893
66		1102	1358	1614	1870	2126	2382	2638	2894
67		1103	1359	1615	1871	2127	2383	2639	2895
68		1104	1360	1616	1872	2128	2384	2640	2896
69		1105	1361	1617	1873	2129	2385	2641	2897
6A		1106	1362	1618	1874	2130	2386	2642	2898
6B	24	1107	1363	1619	1875	2131	2387	2643	2899
6C		1108	1364	1620	1876	2132	2388	2644	2900
6D		1109	1365	1621	1877	2133	2389	2645	2901
6E		1110	1366	1622	1878	2134	2390	2646	2902
6F		1111	1367	1623	1879	2135	2391	2647	2903
70		1112	1368	1624	1880	2136	2392	2648	2904
71		1113	1369	1625	1881	2137	2393	2649	2905
72		1114	1370	1626	1882	2138	2394	2650	2906
73	25	1115	1371	1627	1883	2139	2395	2651	2907
74		1116	1372	1628	1884	2140	2396	2652	2908
75		1117	1373	1629	1885	2141	2397	2653	2909
76		1118	1374	1630	1886	2142	2398	2654	2910
77		1119	1375	1631	1887	2143	2399	2655	2911
78		1120	1376	1632	1888	2144	2400	2656	2912
79		1121	1377	1633	1889	2145	2401	2657	2913
7A		1122	1378	1634	1890	2146	2402	2658	2914
7B	26	1123	1379	1635	1891	2147	2403	2659	2915
7C		1124	1380	1636	1892	2148	2404	2660	2916
7D		1125	1381	1637	1893	2149	2405	2661	2917
7E		1126	1382	1638	1894	2150	2406	2662	2918
7F		1127	1383	1639	1895	2151	2407	2663	2919

CONVERTION TABLE-STATION POSITION NO./CALL NO.

SUBSCRIBERCARDRACK

STATION	CARD									
POS.	POS.									
NO.	NO.	1	2	3	4	5	6	7	8	

80
81

82

83
84
85
86
87
88
89
8A
8B

8C
28
8D
8E
8F

90
91
92
93
94
95
96
97

99
9A
9B 30
9 C
9 D
9E
$9 F$

1128	1384	1640	1896	2152	2408	2664	2920
1129	1385	1641	1897	2153	2409	2665	2921
1130	1386	1642	1898	2154	2410	2666	2922
1131	1387	1643	1899	2155	2411	2667	2923
1132	1388	1644	1900	2156	2412	2668	2924
1133	1389	1645	1901	2157	2413	2669	2925
1134	1390	1646	1902	2158	2414	2670	2926
1135	1391	1647	1903	2159	2415	2671	2927
1136	1392	1648	1904	2160	2416	2672	2928
1137	1393	1649	1905	2161	2417	2673	2929
1138	1394	1650	1906	2162	2418	2674	2930
1139	1395	1651	1907	2163	2419	2675	2931
1140	1396	1652	1908	2164	2420	2666	2932
1141	1397	1653	1999	2165	2421	2677	2933
1142	1398	1654	1910	2166	2422	2678	2934
1143	1399	1655	1911	2167	2423	2679	2935
1144	1400	1656	1912	2168	2424	2680	2936
1145	1401	1657	1913	2169	2425	2681	2937
1146	1402	1658	1914	2170	2426	2682	2939
1147	1403	1659	1915	2171	2427	2683	2939
1148	1404	1660	1916	2172	2428	2684	2940
1149	1405	1661	1917	2173	2429	2685	2941
1150	1406	1662	1918	2174	2430	2686	2042
1151	1407	1663	1919	2175	2431	2687	2943
1152	1408	1664	1920	2176	2432	2688	2944
1153	1409	1665	1921	2177	2433	2689	2945
1154	1410	1666	1922	2178	2434	2690	2946
1155	1411	1667	1923	2179	2435	2691	2947
1156	1412	1668	1924	2180	2436	2692	2948
1157	1413	1669	1925	2181	2437	2693	2949
1158	1414	1670	1926	2182	2438	2694	2950
1159	1415	1671	1927	2183	2439	2695	2951

CONVERTION TABLE-STATION POSITION NO./CALL NO.
SUBSCRIBERCARDRACK

STATION POS. NO.	CARD POS. NO.	1	2	3	4	5	6	7	8
A0		1160	1416	1672	1928	2184	2440	2696	2952
A1		1161	1417	1673	1929	2185	2441	2697	2953
A2		1162	1418	1674	1930	2186	2442	2698	2954
A3	31	1163	1419	1675	1931	2187	2443	2699	2955
A4		1164	1420	1676	1932	2188	2444	2700	2956
A5		1165	1421	1677	1933	2189	2445	2701	2957
A6		1166	1422	1678	1934	2190	2446	2702	2958
A7		1167	1423	1679	1935	2191	2447	2703	2959
A8		1168	1424	1680	1936	2192	2448	2704	2960
A9		1169	1425	1681	1937	2193	2449	2705	2961
AA		1170	1426	1682	1938	2194	2450	2706	2962
$A B$	32	1171	1427	1683	1939	2195	2451	2707	2963
AC		1172	1428	1684	1940	2196	2452	2708	2964
$A D$		1173	1429	1685	1941	2197	2453	2709	2965
AE		1174	1430	1686	1942	2198	2454	2710	2966
AF		1175	1431	1687	1943	2199	2455	2711	2967
B0		1176	1432	1688	1944	2200	2456	2712	2968
B1		1177	1433	1689	1845	2201	2457	2713	2969
B2		1178	1434	1690	1946	2202	2458	2714	2970
B3	33	1179	1435	1691	1947	2203	2459	2715	2971
B4		1180	1436	1692	1948	2204	2460	2716	2972
B5		1181	1437	1693	1949	2205	2461	2717	2973
B6		1182	1438	1694	1950	2206	2462	2718	2974
B7		1183	1439	1695	1951	2207	2463	2719	2975
B8		1184	1440	1696	1952	2208	2464	2720	2976
B9		1185	1441	1697	1953	2209	2465	2721	2977
BA		1186	1442	1698	1954	2210	2466	2722	2978
BB	34	1187	1443	1699	1955	2211	2467	2723	2980
BC		1188	1444	1700	1956	2212	2568	2724	2981
BD		1189	1445	1701	1957	2213	2469	2725	2982
BE		1190	1446	1702	1958	2214	2470	2726	2983
BF		1191	1447	1703	1959	2215	2471	2727	2984

CONVERTION TABLE-STATION POSITION NO./CALL NO.

SUBSCRIBER CARDRACK

STATION	CARD								
POS.	POS.								
NO.	NO.	1	2	3	4	5	6	7	8

C0		1192	1448	1704	1960	2216	2472	2728	2984
C1		1193	1449	1705	1961	2217	2473	2729	2985
C2	1194	1450	1706	1962	2218	2474	2730	2986	
C3	35	1195	1451	1707	1963	2219	2475	2731	2987
C4		1196	1452	1708	1964	2220	2476	2732	2988
C5		1197	1453	1709	1965	2221	2477	2733	2989
C6		1198	1454	1710	1966	2222	2478	2734	2990
C7		1199	1455	1711	1967	2223	2479	2735	2991
C8		1200	1456	1712	1968	2224	2480	2736	2992
C9		1201	1457	1713	1969	2225	2481	2737	2993
CA	1202	1458	1714	1970	2226	2482	2738	2994	
CB	36	1203	1459	1715	1971	2227	2483	2739	2995
CC	1204	1460	1716	1972	2228	2484	2740	2996	
CD		1205	1461	1717	1973	2229	2485	2741	2997
CE	1206	1462	1718	1974	2230	2486	2742	2998	
CF	1207	1463	1719	1975	2231	2487	2743	2999	
D0		1208	1464	1720	1976	2232	2488	2744	3000
D1		1209	1465	1721	1977	2233	2489	2745	3001
D2	1210	1466	1722	1978	2234	2490	2746	3002	
D3		1211	1467	1723	1979	2235	2491	2747	3003
D4	1212	1468	1724	1980	2236	2492	2748	3004	
D5		1213	1469	1725	1981	2237	2493	2749	3005
D6		1214	1470	1726	1982	2238	2494	2750	3006
D7	1215	1471	1727	1983	2239	2495	2751	3007	
D8									
D9		1216	1472	1728	1984	2240	2496	2752	3008
DA	1217	1473	1729	1985	2241	2497	2753	3009	
DB	1218	1474	1730	1986	2242	2498	2754	3010	
DC	1219	1475	1731	1987	2243	2499	2755	3011	
DD	1220	1476	1732	1988	2244	2500	2756	3012	
DE	1221	1477	1733	1989	2245	2501	2757	3013	
DF	1222	1478	1734	1990	2246	2502	2758	3014	
		1223	1479	1735	1991	2247	2503	2759	3015

CONVERTIONTABLE-STATION POSITION NO./CALL NO.
SUBSCRIBERCARDRACK

STATION	CARD POS.	POS. NO.	NO.	1	2	3	4	5	6

6. TECHNICAL SPECIFICATIONS

Ring-Master System CB901 Standard Cardrack Configuration

BASIC CARDRACK DP979

Fig. 1.6. System CB901-1 Layout

PINS 32 A/B MUST NOT BE CONNECTED

Fig. 1.7. Interconnection Cardracks DP979-DP980
00 Ring-Master

Fig. 1.8. Cable temination in station sockets

Fig. 1.9. Location of Subscriber Cable BF925.

Fig. 1.10. CB901-1, Printed circuit board layout

$\begin{aligned} & \text { CARD } \\ & \text { POS. } \end{aligned}$	PCB-CODE	DESCRIPT.	SUB.POS.NOS.	$\begin{aligned} & \text { CARD } \\ & \text { POS. } \end{aligned}$	PCB-CODE	DESCRIPT.	SUB.POS.NOS.
1	NFE 1528	POWER CARD		21	NFE 1625	SUBSCR.CARD	50-57
2	NFE 1625	SUBSCR.CARD	00-07	22	NFE 1625	SUBSCR.CARD	58-5F
3	NFE 1625	SUBSCR.CARD	08-0F	23	NFE 1625	SUBSCR.CARD	60-67
4	NFE 1625	SUBSCR.CARD	10-17	24	NFE 1625	SUBSCR.CARD	68-6F
5	NFE 1625	SUBSCR.CARD	18-1F	25	NFE 1625	SUBSCR.CARD	70-77
6	NFE 1625	SUBSCR.CARD	20-27	26	NFE 1625	SUBSCR.CARD	78-7F
7	NFE 1625	SUBSCR.CARD	28-2F	27	NFE 1625	SUBSCR.CARD	80-87
8	NFE 1625	SUBSCR.CARD	30-37	28	NFE 1625	SUBSCR.CARD	88-8F
9	NFE 1625	SUBSCR.CARD	38-3F	29	NFE 1625	SUBSCR.CARD	90-97
10	NFE 1625	SUBSCR.CARD	40-47	30	NFE 1625	SUBSCR.CARD	98-9F
11	NFE 1625	SUBSCR.CARD	48-4F	31	NFE 1625	SUBSCR.CARD	A0-A7
12	NFE 1625	SUBSCR.CARD	50-57	32	NFE 1625	SUBSCR.CARD	A8-AF
13	NFE 1625	SUBSCR.CARD	58-5F	33	NFE 1625	SUBSCR.CARD	B0-B7
14	NFE 1521	LINK CONTROL	RD	34	NFE 1625	SUBSCR.CARD	B8-BF
15	NFE 1521	LINK CONTROL	RD	35	NFE 1625	SUBSCR.CARD	CO-C7
16	NFE 1607	AUDIO CONTRO	ARD	36	NFE 1625	SUBSCR.CARD	C8-CF
17	NFE 1519	SWITCH CONTR	CARD	37	NFE 1625	SUBSCR.CARD	D0-D7
18	NFE 1606	TIMING CONTRO	CARD	38	NFE 1625	SUBSCR.CARD	D8-DF
19	NFE 1683	PROCESSOR CA		39	NFE 1625	SUBSCR.CARD	E0-E7
20				40	NFE 1625	SUBSCR.CARD	E8-EF

PROGRAMME DISTRIBUTION CARD NFE 1626 WILL OCCUPY ONE SUBSCRIBER CARD POSITION, 10, 11, 12 OR 13. NORMALLY CARD POSITION 10 IS USED, BUT IF THE CENTRAL IF FULLY EQUIPPED (30 SUBSCRIBER CARDS) USE 12 OR 13.

Fig. 1.12. Power Layout. System with Basic Cardrack DP979 only.

Fig. 1.13. Power Layout. System with DP070 and DP980.

Number of Subscribers		56	96	144	240
One all-call every 5 min .	PU2	\times	\times	\times	\times
	PU3		\times	\times	\times
	PU4			\times	x
One all-call every 30 min .	PU2	\times	x	x	x
	PU3		\times	\times	x
	PU4				x
One all-call every 1 hour	PU2	x	x	\times	x
	PU3		\times	\times	\times
	PU4				
One all-call every 24 hour	PU2	\times	x	x	x
	PU3		\times	\times	\times
	PU4				
One all-call every 168 hour	PU2	\times			
	PU3		\times	\times	\times
	PU4				
Battery capacity: $2 \times 12 \mathrm{~V}$		20 Ah	36 Ah	$\begin{aligned} & 12+ \\ & 36 A h \end{aligned}$	$\begin{aligned} & 36+ \\ & 36 A n \end{aligned}$

Fig. 1.14. Power Layout. System with All/Group-call, Battery capacity.

Fig. 1.15. Power Layout. System with all/Group-call.

Fig. 1.16. System with Back-up Batteries. Layout.

Emergency power operation of Ring-Master intercom systems.

The CB901 system is as standard operating at 27vDc.
When calculating the power cable distance between the stations and the power supply, we are normally using this value as a refference. When using this value, we can accept a loss of 6 vDc in the cable.
This is equivalent to aproxemately 350 meters for an AA960 station, when using 0.6 mm cable.

When the system is connected to an emergency battery, the charging voltage will normally be 27.2 vDc .

However, when the system is supplied from the battery during mains failure, the voltage will drop to 24 vDc , and slowly decrease from this value.
The cable distance to the stations will immediately be reduced to approxemately 180 meters.
The operating voltage of a system operating on battery, should therefore be calculated for 24 vDc operation, not 27 vDc .
But it is not easy to keep the battery voltage at 24 vDc during the entire emergency periode. The battery voltage will start to drop, after a discharge periode, and this periode will again be depending on the battery capacity.

Example:
A system is specified for 4 hours battery operation.

The power consumtion is 100 AH .
To maintain 24 vDc for the entire 4 hours periode, with the specified load, we will need a battery with capacity between 250 and 300 AH .
This will give a high cost for the battery and charger.
Recommendation:
We will therefore recommend the use of a 48 vDc battery and charger for larger systems.
Between the battery and the installation you must install a DC/DC converter, which will supply a steady 27 vDc .
The output will be stable 27vDc, for inputs normally between 36 vDc and 76 vDc .
The units are delivered in the following current ranges:
7A, 10A, 14A, 16A and 21A.
The units can easily be connected in parallell for increased power output.

The converter must be calculated to deliver the current required for the complete installation. If All/Call and Group/Call is used, but not programme distribution, then a small dryfit battery can be installed between the DC/DC converter and the installation.
The extra current required during the short time for All/Call, will then be delivered from this battery.

A normal capacity of such a battery is 16 Ah for a 240 numbers central.

System current consumption:

Basic Cardset:	1 A
Each Subscriber Card:	0.1 A
Station in idle:	0.02 A
Station ON, talking:	0.1 A
Station ON, listening normal level:	0.15 A
Station ON, listening max. level:	0.2 A
Station ON, listening w/16 ohm parallel speaker:	0.4 A

Fig. 1.17. Table for charger and battery capacity. System with Back-up Battery.

Fig. 1.18. Connection of Alarm/Programme Distribution signals.

CONNECTION OF EXTERNAL DEVICES TO 3M TERMINALS OF FLAT CABLE. THE FLAT CABLE IS TERMINATED TO THE 64 PIN ROW OF THE CPU CARD, PINS 1A/B TO 32A/B:

```
27A RTS
27B CTS
26A RX
26B GND
25A TX
25B DTR - - - -
24A RTS
24B CTS
23A RX
23B GND
    Printer
22A TX
22B DTR
21A RTS
21B CTS
20A RX
20B GND
    PORT NO. }
19A TX
19B DTR
18A RTS
18B CTS
17A RX
16A TX
16B DTR
```

Service Terminal
9-pin D-connector in front of the NFE 1683. RS 232 serial port
pin:
2 RX
3 TX
4 DTR
5 GND
7 RTS
8 CTS
$7 A+R X 20 \mathrm{~mA}$ current loop. Serial input
7B - - -
$6 A+R X 20 \mathrm{~mA}$ current loop. Serial input
6 B - - -
5A + TX 20 mA current loop. Serial output
5B -
4A +
4B - RX 20 mA current loop. Stage interconnection. PORT NO. 2.
3A +
(Analog link)
3B - TX
$2 \mathrm{~A}+$
2B - RX 20 mA current loop. Stage interconnection. PORT NO. 1.
$1 \mathrm{~A}+\quad$ (Analog link)
1B - TX
RS 232 PORT NO. 6 (fixed)

```

RS 232
PORT NO. 3
Display Driver
RS 232 PORT NO. 5 (fixed)
Service terminal connection (SVT)
```

```
                                    -
```

```
```

 -
    ```

Printer

Pocket Paging Connection





Fig. 1.20. System CB901-1, EMC approved configuration.


Fig. 1.21. Filter Adaptor Layout, DP991 and DP992..


Fig. 1.22. Installation Internal Subscriber Cable BF950 in DP991 and DP992.



Fig. 1.24. Installation Internal RS232 Cable BF957 in DP991.


Fig. 1.25. Installation Internal Cable BF958 for Programme Distribution/Alarm in DP991

Termination of External RS232 Cable BF952/BF952A, 20 pair cable with 37 pin D-sub connector. The IEC colour coding standard is used.


-

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Pair no: & Colour A-wire & Pin nos. D-sub: & RS232 signal: & \begin{tabular}{l}
Colour \\
B-wire:
\end{tabular} & Pin nos. D-sub: & RS232 signal: & Functional description: \\
\hline 1 & white & 1 & RTS & blue & 20 & CTS & PORT NO. 5 \\
\hline 2 & white & 2 & RX & orange & 21 & GND & Service Terminal RS232 \\
\hline 3 & white & 3 & TX & green & 22 & DTR & connection (SVT) \\
\hline 4 & white & 4 & RTS & brown & 23 & CTS & PORT NO. 6 \\
\hline 5 & white & 5 & RX & grey & 24 & GND & Printer RS232 \\
\hline 6 & red & 6 & TX & blue & 25 & DTR & \\
\hline 7 & red & 7 & RTS & orange & 26 & CTS & PORT NO. 4 \\
\hline 8 & red & 8 & RX & green & 27 & GND & Radio Paging RS232 \\
\hline 9 & red & 9 & TX & brown & 28 & DTR & \\
\hline 10 & red & 10 & RTS & grey & 29 & CTS & PORT NO. 3 \\
\hline 11 & black & 11 & RX & blue & 30 & GND & (SVIM) \\
\hline 12 & black & 12 & TX & orange & 31 & DTR & \\
\hline 13 & black & 13 & RX+ & green & 27 & RX- & Serial input 20 mA current loop \\
\hline 14 & black & 14 & TX \({ }_{+}\) & brown & 33 & TX- & Serial output 20 mA current lor \\
\hline 15 & black & 15 & RX+ & grey & 34 & RX- & PORT NO. 2 \\
\hline 16 & yellow & 16 & TX+ & blue & 35 & TX- & Stage interconnection \\
\hline 17 & yellow & 17 & RX+ & orange & 36 & RX- & PORT NO. 1 \\
\hline 18 & yellow & 18 & TX+ & green & 37 & TX- & Stage Interconnection \\
\hline 19 & yellow & 19 & & brown & nc & & \\
\hline 20 & yellow & nc & & grey & nc & & \\
\hline
\end{tabular}

Termination of External Programme Distribution/Alarm Cable BF952/BF952A, 20 pair cable with 37 pin D-sub connector. The IEC colour coding standard is used.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Pair no: & \begin{tabular}{lll|l|l|} 
Colour \\
A-wire
\end{tabular} & \begin{tabular}{l} 
Pin nos. \\
D-sub:
\end{tabular} & \begin{tabular}{l} 
Prog. Dist. \\
signal:
\end{tabular} & \begin{tabular}{l} 
Colour \\
B-wire:
\end{tabular} & \begin{tabular}{l} 
Pin nos. \\
D-sub:
\end{tabular} & \begin{tabular}{l} 
Prog. Dist. \\
signal:
\end{tabular} \\
\hline 1 & white & 1 & Alarm ch. 2 & blue & 20 & Alarm ch. 2 \\
2 & white & 2 & Alarm ch. 1 & orange & 21 & Alarm ch. 1 \\
3 & white & 3 & Prog. dis. 8 & green & 22 & Prog. dis. 8 \\
4 & white & 4 & Prog. dis. 7 & brown & 23 & Prog. dis. 7 \\
5 & white & 5 & Prog. dis. 6 & grey & 24 & Prog. dis. 6 \\
6 & red & 6 & Prog. dis. 5 & blue & 25 & Prog. dis. 5 \\
7 & red & 7 & Prog. dis. 4 & orange & 26 & Prog. dis. 4 \\
8 & red & 8 & Prog. dis. 3 & green & 27 & Prog. dis. 3 \\
9 & red & 9 & Prog. dis. 2 & brown & 28 & Prog. dis. 2 \\
10 & red & 10 & Prog. dis. 1 & grey & 29 & Prog. dis. 1 \\
11 & black & 11 & AEC1,Pblue & & 30 & AEC1,N \\
12 & black & 12 & AEC2,Porange & 31 & AEC2,N \\
13 & black & 13 & Batt. op. pos & green & 27 & Batt. op. neg \\
14 & black & 14 & & brown & 33 & \\
15 & black & 15 & & grey & 34 & \\
16 & yellow & 16 & & blue & 35 & \\
17 & yellow & 17 & & orange & 36 & \\
18 & yellow & 18 & & green & 37 & \\
19 & yellow & 19 & & brown & nc & \\
20 & yellow & nc & & grey & nc & \\
\hline
\end{tabular}

Alarm Enable Channel no. 1, positive = AEC1,P
Alarm Enable Channel no. 1, negative = AEC1, N
Alarm Enable Channel no. 2, positive = AEC2, P
Alarm Enable Channel no. 2, negative = AEC2,N
Battery operation, positive = Batt. op.pos
Battery operation, negative = Batt. op.neg

Termination of External Subscriber Cable BF952/BF952A, 20 pair cable with 37 pin D-sub connector. The IEC colour coding standard is used.


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Pair no: & Colour wire 1: & Pin nos. D-sub: & Colour wire 2: & Pin nos. D-sub: & Station line pos. nos: \\
\hline \multirow[t]{7}{*}{} & 1 & white & 1 & blue & 20 & 00/10/20/30/40/50/60/70/80/90/A0/B0/C0/D0/l \\
\hline & 2 & white & 2 & orange & 21 & 01 \\
\hline & 3 & white & 3 & green & 22 & 02 \\
\hline & 4 & white & 4 & brown & 23 & 03 \\
\hline & 5 & white & 5 & grey & 24 & 04 \\
\hline & 6 & red & 6 & blue & 25 & 05 \\
\hline & 7 & red & 7 & orange & 26 & 06 \\
\hline 8 & 8 & red & 8 & green & 27 & 07 \\
\hline \multirow[t]{8}{*}{} & 9 & red & 9 & brown & 28 & 08 \\
\hline & 10 & red & 10 & grey & 29 & 09 \\
\hline & 11 & black & 11 & blue & 30 & 0A \\
\hline & 12 & black & 12 & orange & 31 & OB \\
\hline & 13 & black & 13 & green & 27 & OC \\
\hline & 14 & black & 14 & brown & 33 & OD \\
\hline & 15 & black & 15 & grey & 34 & OE \\
\hline & 16 & yellow & 16 & blue & 35 & OF \\
\hline \multirow[t]{4}{*}{} & 17 & yellow & 17 & orange & 36 & \\
\hline & 18 & yellow & 18 & green & 37 & \\
\hline & 19 & yellow & 19 & brown & nc & \\
\hline & 20 & yellow & nc & grey & nc & \\
\hline
\end{tabular}

\section*{Expanding Ring-Master System CB901.}

Expanding an existing CB901 system with a new EMC approved Subscriber Cardrack DP992.


The Subscriber Cardrack DP980 is no longer delivered in areas where EMC approved equipi required
RingCom AS will only supply the EMC approve Subscriber Cardrack DP992 when expanding a existing CB901 system, where the (not EMC approved) cardrack DP979 is already installed The DP992 includes all necessary interconnec cables.
See the photo/drawing to the left which indicate where to locate the D-Sub connectors on the b. plate of DP979.
Please see the Ring-Master Installation Manua (WWT-50E), page 76 and 111 for termination 0 Internal Bus Cable BF955 (power wires to the motherboard NFE1523A).
```

FASt Access COMMUNICATION

```

\author{
Alpha Communications \\ 42 Central Drive - Farmingdale NY 11735-1202 \\ Phone (631) 777-5500 Fax (631) 777-5599 \\ Internet: http:/www.alpha-comm.com \\ Email: info@alpha-comm.com
}

The company reserves the right to modify designs and alter specifications without notice, in pursuance of a policy of continuous improvement.
```


[^0]: STENTO ASA and its subsidiaries assume no responsibility for any errors that may appear in its documentation, or damages arising from the information in it. No information in this publication should be regarded as a warranty made by STENTO ASA.
 STENTO ASA reserves the right to make changes in specifications of the products detailed in this handbook as well as the contents of this handbook at any time and without notice. This is consistent with our policy of continuous product analysis and improvement.
 Product names mentioned in this publication may be trademarks. They are used only for identification.

[^1]: INSTALLING THE INTERNAL SUBSCRIBER CABLE BF950 IN CARDRACKS DP991 AND DP992.
 Install Filter Adapter(s) BF951. Each adapter supports two subscriber cards. Plug the

